
AD-A014 425 

CROSS-SPECTRAL PROPERTIES OF SOME COMMON WAVEFORMS 
IN THE PRESENCE OF UNCORRELATED NOISE 

Alan E. Markowitz 

Naval Underwater Systems Center 
New London, Connecticut 

6 August 1975 

DISTRIBUTED BY: 

KEn 
National Technical Information Service 
U. S. DEPARTMENT OF COMMERCE 



r 
\ 

259083 
NUSC Technical Report 4947 

' 

Cross-Spectral k'ropertie s of Som·e Common 
Wave forma in the Presence of 

U ncorrelated Noise 

ALAN E. MARKOWITZ 

S•htarin~ Scmar D~ptlrl•~nl 

6 August 1975 

NAVAL UNDERWATER SYSTEMS CENTER 

New London Laboratory 

ApproYed for public release; distribution unlimited. 
Reproducod by 

NATION AL TECHNICAL 
INFORMATION SERVICE 

US Oepart m•nt of Commerce 
Sp,.nol•eld. VA. 2115 1 



-·~~Sillfl_!!,,_. - - --11: 
ntiS Whlll Sr.lln 

o c BuH St•ilan 0 
CH . ·•.r: 0 
J~:; ·, .. ,,,,1 iO~ ................... ............... . 

..................... .................... 

IY .... .. . 
biS~RI" DTI~II/li'AILA~IlllY COJES 

_D.ist~ -A,-Ait~SPEffil 

.~ 

PREFACE 

Tbla study was performed under NUSC Project No. 
A-134-03, ''Towed Array Noise Modeling," Principal 
Investigator, A. E. Markowitz (Code SA14), and Navy 
Subproj~ctandTaskNo. SF 11121 702-15122, Program 
Manager, C. c. Walker, Naval Sea ·Systems Command 
(Code SEA 06H1-2). 

The Technical Reviewer for thts report was G. C. 
Carter (Code TF). 

The author is grateful to Dr. A. H. Nuttali(NUSC) 
for his suggestion of the approach to be taken in the appeil­
dtx and for pointinlt out the significance of the distribution 
of the random initial phases associated with each of the 
wave components. Also, the author is indebted to Dr. 
R. T.. Menton (NUSC)for hts helpful suggestions, tecb­
ntc.U criticism, and encouragement. 

REVIEWED AND APPROVED: 6 August 1975 

nf!!J./17~ 
C A. Spero, Jr. 

Director, Systems Development 

The author of this report is located at the New London 
Laboratory, Naval Underwater Systems Center, 

New London, Connecticut 06320. 



UNCLASSIFIED 
«ICUWITY CL»S»lFICATIOH Or THIi PAOE (Whto Dim CnMr«« 

REPORT DOCUMENTATION PAGE 

|TR 4947 

READ INSTRUCTIONS 
BEFORE COMPLETWO FORM 

•■   KICI'ICNT't CATALOO NUMBtd a. ooVT ACCCMION NO. 

4.   T(TLI fantf SutMlUj 

CROSS-SPECTRAL PROPERTIES OF SOME 
COMMON WAVEFORMS IN THE PRESENCE 
OF UNCORRELATED NOISE 
1.   AUTMOHnj 

I.   TVPC OF RirORT • PERIOD COVIMO 

•■   PIMFOMIINO ORO. ««PORT NUMRI 

I. BWWWT W BUT BBBWHW 

Alan E. Markowitz 

1.   RERrORHINO ORGANIZATION NAME AND ADDRESS 

Naval Underwater Systems Center 
New London Laboratory 
New London. Connecticut 06320 

«0     RR00RA1« ELEHeNT. PROJECT.   TASK 
AREA A WORK UNIT NUMRERS 

A-134-03 
SF 11 121 702-15122 

II.   CONTROLLING OFFICE NAME AND ADDRESS 
Naval Sea Systems Command (SEA 06H1-2) 
Washington. OC   20360 

IS.   REPORT DAT! 

6 Amust 1975 
IS.   NUMIER OF PAGES UP 

14.   MONITORING AGENCY NAME • AODRESSfH dlltorml horn Canmlllnt OHIct) IS.   SECURITY CLASS, (ol Mt ttport) 

UNCLASSIFIED 
lla.   OICLASSIFICATION/DOWNGRADING 

SCHEDULE 

IS.   DISTRItuTION STATEMENT (ol H.I. P.por(J 

Approved for public release; distribution unlimited. 

IT.   OISTRIRUTION STATEMENT (»I «i. ahiltmcl mltrtd In »loc» It, II dllltfM turn Rtporl) 

II.   SUPPLEMENTARY NOTES 

IS.   KEY WORDS fCoolMu» on nrt»m «Ma II itMfmr 'Ml Idmlllr *r block numbt) 

Cross-spectral properties 
Magnitude coherence 
Phase 
Self-Noise 

Traveling wave components 
Uncorrelated noise 
Waveforms 

10.'  ABSTRACT fCoollnu« on rtrtrn •!<<• II meUMfr mil Honlllr »r Moo* iMmbtt) 

The magnitude coherence and phase for a number of common waveform's in the 
presence of uncorrelated noise is derived mathematically and presented graphically. 
Discussion is limited to waveforms resulting from the combination of no more than two 
traveling waves.   The effects of the relativemagnitudeof thetravelingwavecomponents, 
as well as the uncorrelated noise, are seen. The effect of wave speed is also noted. 
Finally, the periodicity with respect to frequency, observed in the resultant plots, 
is shown to be significant and is a reflection of fee relative wave speeds.   A table  

DO FORM 
I JAN 7) 1473 COITION Of   I NOV *S IS OtSOLCTE 

S/N 0ICI-OU-460I I 
UNCLASSIFIED  

SECUIIITV CLAUIFICATION OF THIS PAOC (Whm OMa Bmlmmd) 



UNCLASSIFIED 
ttcuiTv c<.«Miinc*Tie« or TWJJ W. 

20. Cont'd. 

summarizing the results is also presented. 

' 

UNCLASSIFIED  
MCUNITV CLAMiriCATMN Or THIS P*M(WM» omm m 0 



TR 4947 

TABLE OF CONTENTS 
Page 

LIST OF TABLES  11 

LIST OF ILLUSTRATIONS  11 

INTRODUCTION   1 

THEORETICAL BACKGROUND  1 

RESULTS      4 

General    4 
Specific Cases      5 

ADDITIONAL COMMENTS  13 

APPENDIX—DERIVATION OF MAGNITUDE COHERENCE AND PHASE FOR TWO TRAVELING 
WAVES IN THE PRESENCE OF UNCORRELATED NOISE  23 

LIST OF REFERENCES  29 

.   I 



TR 4947 

LIST OF TABLES 

Table 

1    Summary of Results 

Page 

22 

Figure 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

LIST OF ILLUSTRATIONS 

Model for Single Traveling Wave Plus Uncorrelated Noise 

Model for Two Traveling Waves Plus Uncorrelated Noiae 

IYJJ 
for Sin8le Traveling Wave Plus Uncorrelated Noise. 

Page 

1 

2 

6 

t  for Single Traveling Wave   6 

0 for Classical Standing Wave   8 

j-r12l for Standing Wave (for 2X/(2X + N) - 0.6)   8 

IY12| for Standing Wave (for 2X/(2X + N) - 0.8)  

IYJOI 
for Two Waves With 0 ■ -0X; Case 1, Zero Noise . . 

\y12\ for Two Waves With 0y - -0X; Case 2, N - 2/3 (X + Y) 

|Y12I for Two Waves With 0y - -0X; Case 3. High Noise  . . 

0 for Two Waves With 0y - -0X  

|Y12I for Two Waves With 0 - -0X; Maxima, Minima, and Mean. 

|Y,2| for Two Waves With 0 - -0X; Effect of Relative 
Wave Magnitudes y  

0 for Two Waves With 0 - -0X; Effect of Relative Wave 
Magnitudes  

0 for Equal Magnitude Waves Traveling in Same Direction; 
Effect of 0y/0x    

0 for Unequal Magnitude Waves Traveling in Same Direction; 
Effect of X/Y With 0y/0x - 0.1  

0 for Unequal Magnitude Waves Traveling in Same Direction; 
Effect of X/Y With 0y/0x - 0.5   

0 for Unequal Magnitude Waves Traveling in Same Direction; 
Effect of X/Y With 0y/0x - 2   



TR 4947 

LIST OF ILLUSTRATIONS (Cont'd) 

Figure Page 

19 0 for Unequal Magnitude Waves Traveling In Same Direction; 
Effect of X/Y With 0^ - 3   17 

20 0 for Unequal Magnitude Waves Traveling in Opposite 
Directions; Effect of X/Y with 0y/0x ■ -0-1   18 

21 0 for Unequal Magnitude Waves Traveling in Opposite 
Directions; Effect of X/Y With 0y/0x - -2   19 

22 Resolving an Ambiguity   21 

ili/lv 
Reverse Blank 



TR 4947 

CROSS-SPECTRAL PROPERTIES OF SOME COMMON WAVEFORMS 
IN THE PRESENCE OF UNCORRELATED NOISE 

INTRODUCTION 

An extensive aoount of data analysis had bean performed In 1974 to 
determine towed array self-noise mechanisms.^*** ^ Reduction of the data, 
with particular emphasis placed on determining the magnitude coherence and 
phase, yielded the cross-spectral properties. Since magnitude coherence can 
be a measure of slgnal-to-nolse ratio2* and In conjunction with the phase Is a 
measure of wave speed. It was possible to determine some of the dominant self- 
noise mechanisms. Interpretation of the data, however. Is not always clear 
cut. In the presence of uncorrelated background noise, various mechanisms can 
combine In many different ways to produce complicated results. To achieve a 
better understanding of the self-noise data, it was found useful to investi- 
gate the cross-spectral properties of some comnon waveforms in the presence of 
uncorrelated noise. It is the purpose of this report to present the results of 
this Investigation, with the hope that it will prove useful to others analyzing 
these types of data. 

THEORETICAL BACKGROUND 

This section provides the theoretical background for determining 
magnitude coherence and phase. For a single traveling wave in the presence of 
uncorrelated noise, Carter* showed that 

ynm\ X(f) 
X(f) + N(f) (1) 

based on the model in figure 1, where    Uio^M     l8 the ■""Snltude coherence 
between observation points 1 and 2.    Uncorrelated noise sources ni(t) and n2(t) 
have the respective autospectra N1(f) and NoCf). where Nj^f) - N2(f) ■ N(f). 
X(f) is the autospectrum of x(t), which is 100 percent coherent, since It is 
the same at both observation points.    (A computer run experiment using actual 
at-sc sea data verified equation 
dum.2) 

(1) and is further discussed in a NUSC memoran- 

n,(0 

«(f) 

SENSOR I 

SENSOR 2 

TIME       ] 
DELAY     n2(0 

Figure 1. Model for Single Traveling Wave 
Plus Uncorrelated Noise 

For two independent traveling waves in the presence of uncorrelated noise, 
Gardner^ has shown that 
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Y12(f) 

r(f) x11(f) x22(f)] 
? i ,!•,(£) 

x11(f) + Yll(f) '] f 
+ ry(f) IT (f) 

X22(f) + Y22(f)| r 
Y22(f) M 10 (f) e "yx ' 

(2) 

where Xj^jCf), X22(f), Y.-Cf), and Y22(f) are the autoapectra for the two Inde- 
pendent signals tx(t) and y(t)) at observation points 1 and 2. Here uncorre- 
lated noise Is Included as part of the signal. The cross-spectral densities 

are rx(f)[Xu(f) X^Cf))1« e1^^) and ry(f)[Y11(f) Y22(f)]
,J e^^) 

(I.e., XjoW and YjjCf), respectively) and the phases are 0x(f) and 0y(f). 
Equation (2) can be written as 

Y12(f) X(f) + Y(f) 4 N(f) 
(3) 

as shown by Markowitz for the model in figure 2. 

nx1(n 

1 

K(t) 

,lW 

y(t). 

SENSOR 
1 

TIME 
DEUY 

T 

TIME 
DELAY 

SENSOR 
2 

Figure 2. Model for Two Traveling Waves Plus Uncorrelated Noise 

In the figure ^(t), 0*9(0, nyi(t), and ny2(t) are uncorrelated noise 
sources with autospectra Nxl(f) - Nx2(f) - Nx(f) and Nyl(f) - Ny2(f) - Ny(f) 
The signals x(t) and y(t) are each 100 percent coherent in the model and have 
the respective autospectra X(f) and Y(f). Also, X^Cf) X22(f) -X(f) + Nx(f), 
Yll(f) - Y22(f) " Y(f) + Ny(f), and Nx(f) + Ny(f) -*N(f). We note that (0^ - 
ud/cx) and 0y ■ (uid/cy), where d is the spatial separation between sensors 1 
and 2 and ex, cy are the respective x and y velocities. 

A derivation of equation (3) is given in the appendix. The important 
assumptions made there are that (1) waves are nondispersive; (2) no attenua- 
tion between observation points 1 and 2; (3) x(t) and y(t) signals in equation 
(3) are independent and, therefore, uncorrelated with respect to each other; 
and (4) the estimate of the initial phases associated with each wave are 
uniformly distributed from -IT to +ir. 
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The magnitude coherence and phase obtained from equation (3) are 

ix(f)2 + Y(f)2 + 2X(f)Y(f) cos [MO - 0y(f)| I ^ (4) 

Y12(£) 
X(f) + Y(f) + N(f) 

and 
^ jX(f) sin 0x(f) + Y(f) sin 0 (f) 

0 " tan   1 X(f) cos rm  + Y(f) cos /(f) x y 
(5) 

The significance of the third assumption, regarding the statistical Inde- 
pendence of x(t) and y(t), can readily be seen In the special case of standing 
waves. Consider x(t) and y(t) to be of unity magnitude and traveling In oppo- 
site directions at frequency u0 - 2vf0 to form the standing wave S^ ■ cos 
l^xje^o' at observation point 1 and S2 - cos k0X2e

iuot at observatl 
One can then form the cross correlation to obtain 

T/2 

observation point 2. 

„    / x      1  /* u 1,        -i2irf t    12iff  (t+T)Ji R12(T) - ^ /  cos k^cos k^e o    e        ov      'dt 

-T/1 
11m T ->• » 

■   cos k x.   cos k x,e        oT. o 1 o 2 

The cross-spectral density becomes 

_  ,c\       C       ,      1   12irf T 127rfT. G,„ (f) - I cos k x, cos k x„e   o e    di 
VI J oi    o / 

cos k x, cos k x„ 2IT 
o 1    o 2 

cos 

(2nf-21Tfo) 

Vl C08 koX26 (f-fo) ' 

Normalizing via ^(f) and 622^^ yleld8 

cos(u) x,/c) cos (u x./c) 
 O 1 O £ 
|cos((u x /c)| |cos(u x./c)! Yl2(f) - 1 

In phase 

out of phase 

(6) 

(7) 

where c Is the wave speed (ui /k ).  (Uncorrelated noise sources are Ignored tem- 
o o 

porarlly, since, for the purpose of demonstrating the significance of the third 
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assumption, they represent an unnecessary complication.) These results (equa- 
tions (6) and (7)) differ substantially from the previous results (equations (4) 
and (5)). For a standing wave, equations (4) and (5) show, respectively, 
|Y,.(f)| to be periodic in f and 0 to be spatially homogeneous, whereas equa- 
tions (6) and (7) show, respectively, IYITWI " 1 and 0 to be nonhomogeneous, 
depending upon actual values of x, and x,. T'.ie difference lies in the fact that 
in equations (6) and (7) the x and y traveling wave components of the standing 
wave are not statistically independent, but in equations (4) and (5) they are. 
This difference is shown mathematically in the appendix, where the estimate of 
the cros.. -spectral properties of the combined signals are obtained via ensemble 
averaging.  In each computation of the cross-spectral density, an Initial phase 
is associated with each traveling wave. When the two waves are statistically 
Independent, this initial phase is taken to be random, with a uniform distribu- 
tion from -n to ir. When the ensemble average is formed, various cross-product 
terms drop out because of the random phase relationship and, thereby, equations 
(4) and (5) are obtained.  In equations (6) and (7), the initial phase is assumed 
to be zero, resulting in a determlr.iaLlc phase relationship, namely zero; conse- 
quently the results are different. 

RESULTS 

GENERAL 

This section is essentially a graphic representation of equations (4) and 
(5) for variations of the pertinent parameters.  These parameters are relative 
wave speed determined by 0X and 0y, relative magnitude determined by X(f) and 
Y(f), and relative uncorrelated noise determined by N(f).  For simplicity, the 
frequency dependence of X(f), Y(f), and N(f) is neglected; i.e., the autospectra 
of x(t), y(t), and n(t) are constant with respect to frequency, and equations 
(4) and (5) become, respectively. 

Y12(f) 
Tx2 + Y2 + 2XY co8(0 - 0 M5* 

-L 5 L-L. (8) 
X + Y + N ' 

and 

(X sin 0 + Y sin 0 ) 
9  - tan"1 yrz sr-r-s S^T . (9) (X cos 0 + Y cos 0 ) 

x        y 

where X(f), Y(f), and N(f) are now simply written X, Y, and N. 

Results are presented as a function of 0X for various values of 0y/0x. 
In actual practice, |Yi2l and 0 are obtained as functions of frequency.  The 
conversion is readily made since 

0 - 2TTfd/c  and 0 - 2vfd/c    , (10,11) 
x       x     y       y 

where d is the spatial separation between sensors 1 and 2, and cx and Cy are the 
respective wave velocities for x(t) and y(t). 

In general, the coherence function will reflect a periodicity with respect 
to frequency because of the term [2XY cos 2nf/£ - p )]•  In fact. a single period 
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with respect to frequency,  denoted Af,   is exactly cxc /d(cy - cx): 

Af - c c /d(c    - c ). (12) x y        y       x *    ' 

This periodicity is very important in determining self-noise mechanisms, since 
it is a reflection of wave speed, which is associated with the self-noise mech- 
anisms (i.e., 5000 ft/sec is associated with acoustic waves). Of course, the 
fact that we are dealing with two speeds can present complicated results. When 
only one wave speed exists (i.e., cx - Cy or Y - 0) Af -*■ <» and |YI2I IS a constant. 

We note that the phase is independent of N. However, from a computational 
point of view, uncorrelated noise is important in actual practice, since the 
variance for the computed estimate of the phase depends on the coherence and, 
therefore, on N. 

SPECIFIC CASES 

Discussion here is limited to waveforms resulting from the combination of no 
more than two traveling waves. Four waveforms are investigated: 

1. Single Traveling Wave Plus Uncorrelated Noise 

Equations (8) and (9), respectively, reduce to 

U12(f)I - XTK and 0 " 0x (13'14) 

(see figures 3 and 4). We note that 1x^21 ls constant and this indicates that 
only one wave speed exists, hence only one self-noise mechanism. This wave speed 
is c - 2wd/(0/f), where (0/f) is the slope of the phase plot. 

2, Waves With 0 - -0X Plus Uncorrelated Noise 

Equations (8) and (9) reduce to 

fK    + Y    + 2XY cos 20  ) 
|T12V1,,   " 

and 

lY12(f> I   "   " X + Y + N - (15) 

-i r(x - Y> tan K] 
[       (X + Y)        J *-tan [       (X + Y)        J" (16) 

The magnitude coherence is periodic in 0X, with a period of TI radians corre- 
sponding to Af = cx/2d. The speed of the traveling components of waves with 
0y - -0X is,  therefore, c - 2dAf. 

2a.     Equal Magnitude Traveling Wave Components  (Classical  Standing Wave) 

Equations  (15)  and   (16)  become,  respectively, 

l^f>l-2jm?(2 + 2c082<,x)!i"2rh cos 0x (17) 
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1.0 

CM / 

IT,,.« ,     coo     SIGNAL ri2|    0.5     FOR    j^^- -1 

_L J L. 

3^ 6» 

Figure 3.    IYJJ   for Single Traveling Wave Plus Uncorrelated Noise 

♦    3 »   - 

Figure A. 0 for Single Traveling Wave 
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and 

0« •_ < V2, " < *x < 3l,/2 (i-6-.  tan 0x !■ positive) — x 

(18) 

3Tr 
/j * •, 1 ". """/j < flx < 2W (I.e., tan 0x Is negative) 

The essential characteristics of the classical standing wave, 
shown In figures 5-7, are as follows: 

• Figure 5 shows the step function characteristic of the phase 
where 0  contains jumps of IT radians. This Is superimposed over 
the traveling wave component for reference. 

* Figure 6 shows the periodic characteristic of the standing wave 
for 2X/(2X + N) - 0.6. The nominal values chosen were X - Y - 3 
and N ■ 4. We note that for equal magnitude components the 
minima occur at IYJ^I ■ 0 and the maxima at 2X/(2X + N).  The 
frequency period Is Af - cx/2d or, with respect to 0X, It Is w. 

e Figure 7 shows that as the noise (N) Is reduced, the peak In- 
creases to the new value of 2X/(2X + N), which. In this case. 
Is 0.8. The nominal values chosen were X - Y - 2 and N - 1. 

2b. Unequal Magnitude Traveling Wave Components 

For Y - 2X, as an example, equations (IS) and (16) become, re- 
spectively. 

lY12(f)| - 
X(5 + 4 cos 20 )' 

3X + N ixTir ^ + 8 'o*2 K)ls 

and 

0 - tan -1 (1/3 tan 0x). 

These  .»ults are shown In figures 8-10. As for all waves with 0y - -0X, the 
periodicity of IY^I with respect to 0X Is w. 

The minima are no longer zero, as previously observed for X - Y, 
but depend on the noise (N). The effect cf N Is to control the minimum points, 
peak points, and peak-to-valley excursions. These values decrease as N Increases. 

Characteristics of the phase plot are seen In figure 11 to be 
between the standing wave step function (X - Y) case and the straight line 
single traveling wave case, which again Is shown for reference In the figure. 
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6<r 

03» 

STANDING WAVE 
STEP FUNCTION N^^: 

^F1 

j 1 i_ 

TRAVELING WAVE 
COMPONENT 

-I I 1 1- 
3» 6» 

Figure 5. 0 for Classical Standing Wave 

2X/(2X + N) - 0.6. 

Figure 6. |Y  I for Standing Wave (for 2X/(2X + N) - 0.6) 

2X/(2X + M) - Q.a 

Figure 7. |Y  | for Standing Wave (for 2X/(2X + N) - 0.8) 
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Figure 8. IY^I for Two Waves With 0 - -0X; Case 1, Zero Noise 

1.0 
X - 2Y, N - |(X + Y) 

_1 I L. 
3n 

Ox 

J I I 1 I 
6ir 

Figure 9. |Y]?| for Two Waves With 0 - -0X; Case 2, N - 2/3 (X + Y) 

1.0 

X - 2Y, N - 3(X + Y) 

Figure 10. IY,,! for Two Waves With 0y - -0x; Case 3, High Noise 
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♦ 3» - 

Figure 11. 0 for Two Waves With 0„ - -0 

|Y12I 18 

We can now generalize. For waves with 0 « -0 , the range of 
y   * 

X - Y 
X + Y + N lY,,! 

X + Y 
121- X + Y + N 

and If we assume by convention X > Y, then the mean value of |Y19| will be 

X 

'12' 

Iv, mean X > Y, 

(19) 

(20) 
'12' "~"  X + Y + N 

with an excursion of +Y/(X + Y + N), as shown In figure 12. 

Therefore, as Y -> X, for a given N, the minima approach zero, the 
peak-to-valley excursion is maximized, and U12I mean is reduced. For X >> Y, 
the results approach the single traveling wave case. This Is seen In figure 13 
for X - 2Y, X - 5Y, X - ilY, and N - 2/3(X + Y). Thus, as (X/Y) Increases, 
IY12I becomes more nearly constant. 

The generalization pertaining to 0 is simply that as X/Y •*■  1 
the characteristic step function, seen in figure 5, is observed, and as X » Y 
the results approach the single traveling wave case shown in figure 4.  Figure 
11 presents an "in between" case, where X - 2Y.  Finally, figure 14 compares 
X - 5Y with X - 2y, where the former case Is already approaching the straight 
line condition. 

3, Two Waves Traveling in Same Direction 

From equation (8) we note that the magnitude coherence will have a 
periodicity In f dependent upon (0X - 0y) and is indistinguishable from other 
waveforms with similar characteristics. For example, a wave -.'«-h 0« - - 0X 
having traveling wave components X8W and Y8W and a phase velocity or t>xav  is 
compared with the sum of two waves, Xtw and Ytw, traveling in the same direction 
with phases 0xtw and 0ytw. Their magnitude coherences are indistinguishable if 

10 
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1.0 
X -  2Y,  N - 2(x + Y) 

X + Y 

Figure 12.    |Y12I   for Two Waves With 0    - -J>x; Maxima, Minima,  and Mean 

N - ^(X + Y) 

Figure 13. |Y1?1 for Two Waves With 0 - -0x; Effect of 

Relative Wave Magnitudes 

Figure 14. 0 for Two Waves With 0 - -0X; Effect of 

Relative Wave Magnitudes 
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X8w - xtw« Ysw " Ytw' and 2^xsw ■ ^xtw " fytw)- Thi8 situation Is discussed 
furcher on p. 13. 

3a. Equal Magnitude Components 

For equal magnitude traveling waves, equation (9) becomes 

, fsin 0 + sin 0 I   0+0 
Ä.tan-1  *  JL\   -^—J.    . 

jcos 0 + cos 0 J     2 (21) 

Thereby, 0 becomes a linear function of 0X for given values of (0y/0x) and is 
shown in figure 15. 

♦ 3»- 

Figure 15. 0 for Equal Magnitude Waves Traveling in 

Same Direction; Effect of 0y/0x 

3b. Unequal Magnitude Coagoaentg 

In general, the two traveling waves will have unequal magnitudes. 
In such a case, certain characteristics of 0 can be observed by rewriting equa- 
tion (9) as 

0 - :an -1 tan 0 (22) 

In the above equation, we assume X to be the dominant component. 
(This is done arbitrarily for convenience, and Y and 0y can easily be substituted 
for X and 0X, yielding the same results.) For (X/Y) » 1, this term dominates 
and 0 ♦ 0X, regardless of the va.ue of (0y/0x). For (0y/0x) < 1 and X/Y - 0(1), 
the trigonometric terms introduce periodic variations about the line 0 - 0X. At 
X/Y - 1, of course, equation (21) applies. 

In actual computations, in order to get the results of equation (21), 
it is critical that X/Y be within a fraction of a percent from 1. This is shown 

12 
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in figures 16 and 17.  Clearly, for (0y/0x) - 1, 0 - 0X.  For (0y/0x) > 1 and 
X/Y - 0(1), again periodic variations about the line 0 " 0X are introduced. How- 
ever, computationally, if X/Y gets "too close" to 1, Jumps of it or 2w may occur. 
This is shown in figures 18 and 19.  Also, the periodicity of these variations is 
[l/(l-0y/0„] 2IT.  Thus, in figures 16 and 17, the periodicity of the variation 
about the line 0 - 0X is (10/9)2IT and 47r, respectively.  In figures 18 and 19, 
the periodicity of the variation aboi-t the line 0 » 0X is -2TI  and -ir, respec- 
tively.  The positive or negative sign determines whether the variation is initi- 
ated above or below the line 0 ■ 0X. 

4. Two Waves Traveling in Opposite Directions 

The results for two waves traveling in opposite directions are almost 
the same as in section 3. (p. 10), except for the sign change in 0y and sin 
0y.  The main difference is in the periodicity of the coherence function and in 
the periodicity of the variations about the line 0 - 0X.  As mentioned in sub- 
section 3b., the periodicity of these variations is [1/(1 - 0y/0x)] 2ii,     There- 
fore, for (0y/0x) - -0.1 (see figure 20) and (0y/0x) - -2 (see figure 21), these 
periodicities arc (10/11)2IT and 2n/3, respectively.  For comparison purposes one 
should refer to figures 16 and 18.  There the periodicities are (10/9)2TT and -2n, 
respectively, where (0y/0x) » + 0.1 and + 2. 

ADDITIONAL COMMENTS 

Unfortunately, similar and, in some cases, Identical phase plots arise from 
completely different combinations of self-noise mechanisms.  The same is true for 
coherence plots.  These ambiguities are usually resolved by looking at both the 
phase and coherence.  However, care must be exercised. 

As a simple example, one notes that for equal magnitude traveling waves 
equation (21) shows 0 ■ (0X + 0y)/2.  Denoting cases 1 and 2 by their respec- 
tive subscripts, we see that for 0X^ + 0y1 - 0X2 + 0y2 the phase plots are in- 
distinguishable.  In terms of wave speed, this becomes 

Since the spacing between sensors is known and is the same in both cases, any 
combination of cxi, Cy^ and cx2, cy2 that satisfies the above yields the same 
and, therefore, ambiguous result.  Consider an Investigator who observes a 
straight line phase plot with a slope of 0.6o/Hz for a sensor spacing of 6 in. 
He might interpret the result to be a single wave traveling at 300 ft/sec, where 
c - 360 d/(0/f).  Call this case 1.  However, the investigator might not have 
noticed electronic noise that was combining with a wave equal in magnitude to 
the electronic noise and traveling at 150 ft/sec.  Call this case 2. Then, 
cxl " cyl " ^ ft/sec, while cx2 ■ 150 ft/sec and Cy2 ♦ co-    Although both cases 
1 and 2 yield the same phase plot, they can be easily distinguished by studying 
the coherence plots.  Case 1 shows a constant magnitude coherence, whereas case 
2 reflects a periodicity with respect to frequency. 

In another example, a wave with 0V » -0X is compared with the sum of two 
waves traveling in the same direction. The wave with 0y = -0X has traveling 
wave components Xsw and Ygw and phase 0XSW.  The two waves traveling in the 
same direction have components Xtw and Ytw, with phases 0xtw 

an^ 0ytw  ^ 
was mentioned in section 3. (p. 10) that the magnitude coherences are identical 
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Figure 16. 0 for unequal Magnitude Waves Traveling In Same Direction; 

Effect of X/Y With 0y/t)x - 0.1 
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6tr 

♦ 3» - 

Figure 17. 0 for Unequal Magnitude Waves Traveling In Same Direction; 

Effect of X/Y With t)y/0x - 0.5 
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Figure 18. 0 for Unequal Magnitude Waves Traveling In Same Direction; 
Effect of X/Y With 0y/0x - 2 
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6T 

*    3,h 

Figure 19. 0 for Unequal Hagnitude Waves Traveling In Same Direction; 
Effect of X/Y With 0y/0x - 3 
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Figure 20. 0 for Unequal Magnitude Waves Traveling In Opposite 
Directions; Effect of X/Y With 0y/0x - -0.1 
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♦  3»- 

Figure  21. 0 for Unequal Magnitude Waves Traveling in Opposite 
Directions;  Effect of X/Y With 0y/0x - -2 
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If Xw - Xtw, ¥„, - Ytw and 20   - (0xtw - 0ytw). If cx,w - 300 ft/eec, 
cxtw " 150 ft/sec,  and Cytw - 50Ö0 ft/sec, the results are not Identical but 
so close as to render them indistinguishable.  The two cases, however, are 
easily distinguished by noting the phase. A straight line drawn through the 
periodic variations will determine the speed of the dominant wave (in this 
case either 300 or 150 ft/sec). 

The final example compares two waves, denoted X8 and Y8, traveling in the 
same direction with two waves, denoted XQ and Y0, traveling in opposite direc- 
tions. Following the convention adopted in subsection 3b. (p. 12), we assume X 
to be the dominant component. Then, if X0 - X8, Y0 • Y, and if cxo - cx8, 
the only observable difference in both the phase and coherence plots would be 
in the periodicity with respect to frequency as a result of the fact that Cy0 j 
Cy8. The observed periodicity, as mentioned previously, is [V(l-0y/0x)] 2ir 
with respect to 0X.  Since, in actual practice, data are obtained as a function 
of frequency (not 0X, which is what the investigator is seeking to determine), 
this periodicity is Af -|A/dV^ - lj| or, denoting (0y/ex) - (cx/cy) - o, 

Af - cx/d(l-a). (23) 

In order for the periodicities to be the sane, Af8 would have to equal Af0, 
which would require that a8 - a0, since d is the same in both cas^s, as is cx 
(by definition).  This is impossible because a8 is always positive and a0 always 
negative. It is, however, possible to obtain Af0 ■ -Af.. This would produce 
an identical periodicity in the coherence plots for both cases. Also, the same 
periodicity would be produced in the phase plots for both cases, but with a half- 
period phase shift.  This is all shown in figure 22. 

It is hoped that the results obtained, along with the examples presented, 
are of help to those analyzing these types of data. For convenience the results 
are summarized in table 1. 

In actual practice, the reduced data are usually more complicated owing to 
(1) the presence of more than two self-noise mechanisms, (2) dispersive waves, 
(3) damping, (4) the statistical dependence of waves as a result of reflections, 
and (5) the dependence of all pertinent parameters on frequency. If desirable, 
the investigator can often minimize these complications by careful experiment 
design. 

The investigator should also look at the time domain data, in particular 
the cross correlation, to shed light on or to confirm his analysis. Periodi- 
cities occurring In the frequency domain might be seen more readily via a 

>r a Smoothed Coherence Transform (SCOT).8,9 Cepstrum analyals' or 
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6jr r- 

♦    3»r - 

Figure   22. Resolving an Ambiguity 
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Appendix 

DERIVATION OF MAGNITUDE COHERENCE AND PHASE FOR 
TWO TRAVELING WAVES IN THE PRESENCE OF UNCORRELATEO NOISE 

Two traveling waves plus random noise are measured at observation points 
1 and 2.* At w - u0 the observed signals are, respectively, 

x x 
lu t 16 .     im  (t- —)  16     lu (t- -rh   16 (A-l) 

_       o   nl . „  o   cx    x . „  o   c    y 
S - n.e   e   + Xe      x e   + Ye      V e ' 

and x x 
lui t ien2    lu (t- TT^-) 16      lü) (t- fr-)   16 

S2 - n2e 
0 e   + Xe 0   Cx e x + Ye 0    y e y,       (A-2) 

where 9n^, 0n2, 6x,and 6y are the Initial phases associated with a particular 
observation, and n^ ■ n^Cu), n2 ■ n2(u)), X ■ X(m),  and Y - Y(u) are understood. 
Also note X Is a traveling wave as distinguished from x the spatial coordinate. 

The autocorrelation at point 1 Is 

. f1"^    ,  lu x T^ lu T  -lu  (-^)   1(6 -6  .) ™/\      11/      2      o.^/      „      o o c'        x   nl. ^ 
11(T) " fl   / nl e d / nl e d 

L-T/2 -T/2 
11m T ■♦ <- 

/,/2 lu) T  -lu) *Jcv    1(6 -6  .) T/^ , lu T v     0 o i   y y    nl   ...  .      / „2     o    ., n^e        e e dt+IXe dt 
-T/2 -T/2 

T^2        iu t  IwK./c       1(9 ,-6 ) T(.2       lu T lu     [ !l - -i)   1(6 -6^)  dt 
+   y^e    0e    ol    Xe      nl    x   dt +   / XYe    0 e    0   VCx      V e      y    X 

-1/2 -T/2 

/T lü) T  lu x./c      1(9 ,-6 ) T//      lu 1     lü) (-^ - —| 1(9 -6„) 
Y^e    0e    ol    ye      nl    y    dt +    f YXe    0    ,    0VCy      V«      X    y    dt 

-T/2 -T/2 
T/2   , 1 

'y.  -   lü) T 

/Y e   0 ^ 
-i/2 J 

(A-3) 

*The approach taken In this appendix was suggested by Dr. A. H. Nut tall, of NUSC. 
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The corresponding autospectrum is 

G.Au)  - (N.2 + X2 + Y2) 2n6((J)-ü) ) 
11      i o 

E-i« x./c i(e -e ,)  iu x./c  i(e ,-e )] 
^ o 1 x   x nl ,   o 1 x   nl x , .,   x e       e       + e       e       J 2it6(w-(i) ) 

[-lu x,/c      1(6 -6  .)        Iu x./c      1(6  ,-6  )I o 1    y y    nl    , o 1    y nl    y L x/        v e '  e      J +e 'e ' J2ir6 (üJ-U ) 

[Iu   (^1 - ^i\ 1(6 -6  )        Iu   (-1 _ Uli    1(6 -6  )] 
e    0\cx      cy/e      y    X   +e    0 \cy      c^        x    yj^^^).       ^.4) 

Taking 6 .,  6 ., 6 ^and 6    as uniformly distributed random variables and 
ensemble averaging, we get 

G.Au) -  (n 2 + X2 + Y
2
)2ITö(U)-W ). (A-5) 11 1 o 

All cross terns Involving differences between Initial phase angles go to 
zero. This can be seen as follows: 

i(eb-0.) I \  KÖK-e.) 
3 "//'  b " P<0b)P(0a)debd0a. <A-6) 

-U -IT 

where P(6. ,6 ) - P(6. )P(e ) for statistical independence. 
D a      D   a 

Taking P(0 ) - ^-1 -TT < 0 < w and P(9. ) - ^1- 
a   zn I   — a —        b   2TF 

0 ) IT < 0 < -IT 0 
a "    "  "b 

we get 

-If < 0.  < IT 
—  D — 

I 

n < 0, < -IT 

-//' 
- - / / e    debd0a - 0. (A_7) 

TT  TT 

Therefore, P(6 ) or P(e. ) must be uniformly distributed to have the cross terms 
drop out. 

Similarly one obtains 

G22(i»)  - (n2
2 + X2 + Y2)2IT6(W-ü)O). (A-8) 
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Writing the cross correlation and ensemble averaging yields the cross 
spectrum G^iu): 

G12(U) - Lx
2e "^ Cx  /+Y2« ^ cy ' UwHu-uJ, (A-9) 

and the coherence Is simply 

lu) 

r12 - r* ^) . 4^) 2 lu>o> + Y^e 0 

"C^2 + X2 + Y2) (n2
2 + X2 + Y2) * 

This Is Identical to equation (3), where 

(A-10) 

X2(u)) - X(f), Y2(u)) - Y(f);and n^u)
2 - n2(u))

Z - N(f). 

Also, (x. - x2) - d. 

When ex and 6y have deterministic relationships, different results are 
effected. Consider, for example, when 9X - 9y » 0, the observed signals are 

1(0 t    Ico (t - -i)    la)rt(t - -i) 
S1 - n^ 

0 + Xe 0    cx + Ye 0    Cy (A-ll) 

and 
X X 

lu t    lu (t - —)    lu (t - —) 
S2 - n2e 

0 + Xe 0    cx + Ye 0    cy . (A-12) 

Note, only X and Y are not Independent; however, n-^  and n2 are Indepen- 
dent relative to each other and to X and Y. Since, as observed previously, 
all cross terms Involving n^ and n^ will drop out after ensemble averaging, 
there Is no need to demonstrate this further by Incorporating the Intltal 
phase angles. Also, n^ - n^Cui), 112 • n~(u),  X - X(u)), and Y • Y(u)) Is under- 
stood. 

The autocorrelation at point 1 Is 

T/2    J.. .     T/2 

R11<T> " f 
lu) T 

e 0 dt +  / X2e 0 dt +  / Y2e 0 dt 
/XUI I /•  . 1U T /• 

nff    0 dt +  / X2e 0 dt +  / 

T/2 -T/2 -T/2 
Tf/      lux V  '«1  xl\     W      1« T 1U /!l . M 
y XYe 0 e 0\r-r)it+   / YXe 0 e 0^y 'J (A-13) 
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and 

^11 

rlu/!i_!i\ 
(u) - n.2 2IT6(ü) - ü) ) +  (X2 + Y2)2Tt6(w - u) + XY e    ^x      Cy/ i o o u        ' 

+ e    Yy      cx/j2ii( T6(U)    -   U)    ) 
o 

Similarly, 

G22(a))  - n2  2IT6 (ü) - o)  ) +  (X2 + Y2)2Tf6(iü - ü)O) + XY[e    0\cx      cy/ 

lw
0/_2 _ ^2 

+ e       \c        c   , 2ir6((ü - u ) o 

The cross spectrum is readily obtained: 

Gl2(«) - 
u fi' M     ^pi - x2)       1 /!i   M 

X2e "A    Cx      /+ Y2e    \   Cy     /+ XY e    T*      V 

.   oVc   c j + e  \ y   x ,  2ii5(u) - u) ). 
/        o 

Also, one may write 

II 1 
Xe       0    *    + ye       0     c 

11 i o 

(A-14) 

(A-15) 

(A-16) 

2ir6(u) - ui ),        (A-17) o 

x2 x2I  2 _ -iu    — -iu)      —I 
G,,(u) - n,    2Tr5(u) - u  ) +    Xe      0 cx    + Ye      0    cy        2ir«(w - u ),   (A-18) 22 2 o I o 

[lu    — +iu    — -lu    — -lu    ~ 
Xe    0 Cx + Ye      0 CyJ    [xe      0 Cx + Ye      0 CyJ 2^5 (u - %) (A-19) 

and,   ignoring uncorrelated noise sources,  as was done previously in equation  (6), 

+ Ye  
0l y)(xe C12(u) 

/  +lu XT/C     +1W x,/c \ /  -lu x_/c     -iu x./c \ 
(xe  0 1 X + Ye  

0l y)(xe  0 2 x + Ye  0 2 ^ 
-iu x,/c     -iu x,/c 12 

Xe  0 1 x + Ye  0 1 y 
-iu x0/c     -iu x./c 

Xe  0 2 x + Ye  0 2 y (A-20) 
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(A^OM^cimes0"6 n0te8 that f0r " 8tandin8 wave' cx - -Cy - c and equation 

12^     -lu x /c    -Ha) x /c 2   -iu x,/c . „ +10» x,/c 
Xe  0 1  + Ye  0 1    Xe  0 2  + Ye  0 2 

:): 
(A-21) 

for X - Y, 

r12(«) cos (D0(x1/c)  cos u)0(x2/c) 

COS (D x-Zc 

which Is Identical to equation (6), 

cos to x0/c o z (A-22) 
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